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Abstract

A systematic investigation to derive three-dimensional analogs of two-
dimensional Quispel, Roberts and Thompson (QRT) mappings is presented.
The question of integrability of the obtained three-dimensional mappings with
two independent integrals is also analyzed. It is also shown that there exist
three-dimensional QRT maps with three n-dependent integrals.

PACS numbers: 02.301k, 02.30.Jr, 45.20.]j

1. Introduction

The study of nonlinear dynamical systems results in difference equations or mappings
that model discrete systems. Discrete systems governed by difference equations are more
fundamental than the continuous ones described by differential equations [2, 6]. The theory
of differential equations (both ordinary and partial) is reasonably well developed in contrast
to the theory of difference equations whose study is only in its initial stage. The theory
of special functions has offered interesting examples of nonlinear difference equations and
motivated its study. The significance of discrete integrable systems lies in the fact that
many areas of mathematics and physics like algebraic geometry, complex analysis, theory of
special functions, graph theory, Galois theory, spectral theory and difference geometry have
an intimate connection with it.

The study of nonlinear difference equations has drawn much attention from different
points of view including its integrability by several researchers [3, 5, 7, 11, 14-16, 25,
26]. Considerable progress have been made for second order ordinary difference equations
(OAE) or mappings toward finding its solution and analyzing its integrability [4, 12, 18,
19]. Systematic efforts to analyze third order O AE particularly from the point of view of
integrability have been made by several researchers in recent years [1, 8, 10, 13, 17, 20-24].
But a more general form of third order O AE of the Quispel, Roberts and Thompson (QRT)
form similar to the one in the second order case is elusive. The purpose of the article is to
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explain how to construct three-dimensional analogs of the two-dimensional QRT mappings
with one or two rational integrals.

It is appropriate to mention here that there exists no unique definition of integrability
either for differential or difference equations. One of the notions of integrability is related
with the existence of sufficient number of integrals. An integral (also referred to as conserved
quantity) is a function that is not identically constant but is constant on all solutions of the
OAE. An autonomous Nth order O AE is said to be integrable if (i) it is measure preserving
and (ii) admits N — 1 functionally independent integrals. This working definition provides an
effective tool to identify autonomous integrable difference equations.

The plan of the paper is as follows. In section 2, we explain how to construct three-
dimensional QRT mappings with one or two rational integrals. In section 3, we give a brief
summary of our results. Also the question of integrability of the obtained three-dimensional
mappings with two independent integrals is discussed. In appendix A we provide a list of
three-dimensional QRT mappings possessing three n-dependent integrals.

2. Construction of a rational integral for third order OAE

Consider an autonomous third order O A E having the form

Wps3 = F(Wy, Wpel, Wie2) or w3 = F(wp, wy, w), wo=w, =wn). (2.1)
A non-trivial function [I(w,, Wy, Wpen) 1S said to be an integral for (2.1) if
I (W, Wpit, Wpi2) = I (Wpe1, Waia, Wy43) holds. In [23], the authors have proposed a method

to construct a polynomial integral for (2.1) having the form
3

I(wo, wi, wa) = Y [Arj(wi)ws + Agj (wi)wy + As; (wi)|wy
j=1
and identified several third order O A E possessing two independent integrals. In this paper,
we wish to explain how to construct a rational integral for (2.1) having the form

P(wo, wy, wa) Zj»zl [Alj(wl)w% + Agj(w)wy + A3_f(w1)]w3_j

Qwo, wiowa) 373 [arj(wi)w] +az; (wiws +as; (w)wg '
2.2)

where A;;(w) and a;;(w;) are arbitrary functions. We wish to mention that by considering

3 2 3—j
A (w)ws + A (w)wsr + Az (wy) |w
I (wo, wi, wy) = Zj_l[ 1 DS + Aoy wws + A (wn)]wg . (23)
WoW1 Wy

we have identified several third order O A E with two rational integrals [22] (see also [8, 10,
21]). Inthis paper, we consider a more general rational integral given in (2.2). The integrability
condition I (w,, Wy+1, Wys2) = I (Wpt1, Wne2, Wy43) leads to the quadratic equation in w3 as

I(wOs wi, wz) =

3 3
3-j 3_j 2
E Apj(w)w; | Q(wo, wi, wr) — E arj(w)wy | P(wo, wi, wa) | w3
=1 =1

3 3
3—j 3=

+ Z Asj(wr)w, O (wo, wy, wy) — ZaZj(WZ)wl P(wo, wi, w) | w3

j=1 j=1

3 3

3—j 3_j
+ D Asjwwi ™ | Qwo, wiwa) — | Y asjwa)wy ™ | Pwo, wi, w) | =0.
j=1 j=1

2.4)
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Note that the above equation can be solved for ws in different ways. For example, if
Aji(wy) = ai(wy) =0,i =1,2,3, and Aj(wy) = aji(wy), j = 2,3, then we obtain
the following OAE:

Fi(wy, wa) — Fa(wy, wa)wo Fi —woF,
3= or w3=-—-—, (2.5)
F3(wy, wa) — Fa(wy, wa)wy Fs —woFy
which can be viewed as a three-dimensional QRT mapping possessing one integral
A +A +A +A
I (wo. . ws) = [An(wi)ws + Az (wi)]wo + Az (wi)ws + Azz(wy) 2.6)

[azz (wi)wy + az(wi)wo + axz(wi)w + azz(wy)

where  Axn(wi), Ax(wr), Az (wr), Azz(wi), axn(wy), axs(wy), a(wy) and azz(w;) are
arbitrary functions. Here

3 3 3 3
3—j 3—j 33— 3—j
F = Zaaj(w2)w1 ! ZAja(wl)wz - ZAaj(wz)wl / Za_j3(wl)w2 ",
i—2 = i—2

J=2

3 3 3 3
3j 3-j 3_j 3j
k= Zajz(wl)wz ! ZAsj(wz)wl - ZA_jZ(wl)wz ! Za3_;(w2)wl ",
i—2 i—2

=2 j=2

3 3 3 3
3 3-j 3-j 3
Fy= > apwow; | [ Y Ayjwwi™ | = 1D Ap@nwy™ | D ajwwy™ |
=2 =

=2 j=2

3 3 3 3

3—j 3—j 3—j 3—j

Fo= > ajww; | [ D Apwow; ™ | = | D Agjwwi ™ | D ajpwiw;™
=2 j=2 =2

j=2

Equation (2.4) can also be solved at least in two more distinct ways for w3 through factorization.
For clarity, we discuss them separately as cases 1 and 2.

2.1. Case 1

Equation (2.4) can be factored as

( 1 |:A13(w1)w% + Aoz (wp)ws + A33(w1):|) <w3 _ |:f2(w1, wy) — f3(wy, wz)wo]

w3 — —
Ap(wo)wi + Ap(w)wy + A3(wz) Si(wi, wa) — fo(wr, wa)wo

Wo

A 2+ A A
y [ 31(w2)w;+ n(w)w; + 33(w2):|) —0 @7

Ap(wpwy + Az (wy)wy + Azp(wy)
provided the following conditions are satisfied:
Azt (w)wi + Ap(wa)wy + Axz(wa) = App(wi)w3 + Asa(wi)ws + Azp(wy), (2.8a)
a1 (W2)wi + an(Wr)wy + az(ws) = ap(w))wj + axn(w))ws + axn (w), (2.8b)
[An(w)w] + Ap(w)wy + Az (wy)] _ [an (w2)w + arp(wa)wy +arz(wy)]
[Az(w)w] + Aps(w)wa + Asz(wi)] [aiz(w)w3 + azs(w)ws + azs(wy) ]
. [An(w)w] + Ay (w)ws + Az (w)] . [an (w)w3 + az (wi)w; +az; (wy) ] (2.80)

 [Asi(w)w? + An(w)wy + Axz(w)]  [az (w)w +asn(w)w +azs(wo)]’
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where
Si(wy, wp) = Ax(wy, wa)az(wy, wa) — ax(wy, wa)Az(wy, wa),
Sa(wy, wp) = Az(wy, wa)ai(wy, w) — az(wy, wa)Ay(wy, wa),
f3(wr, wa) = Ay(wr, wa)az(wr, wa) — ay(wy, wa)Az(wr, wa), L (2.9)
Aij(wy, wp) = Zizl Aﬁ(wl)wifj, 123
ai(wy, wy) = Z?Zlaﬁ(wl)wi_j, T

Obviously (2.7) can be rewritten as

1 [Aw)wl + Ap(w)ws + Az (wy)
ws = — 2 , (2.10)
wo [ An(w)wy + Ap(w2)w; + Az(ws)
ws = |:f2(w17 wy) — fa(wy, wz)wo] |:A31(w2)w% + Az (w)wy + A33(w2)] 2.11)
’ fi(wi, wa) = fa(wr, w)wo | [ Ay (wi)w3 + Ay (wi)wy + Azy(wy) '
or
ws = |:G1(w1, wy) — Ga(wy, wz)wo} . 2.12)
G3(wy, wa) — Ga(wy, wr)wo

It is known that equation (2.10) arises as a reduction of sine-Gordon lattice equation. It
is appropriate to mention that the O A E having the form (2.10) have been analyzed by several
authors from different points of view including its complete integrability [8, 10, 13, 17, 21,
22].

From (2.11) it is clear that there exist two possibilities and we denote them as cases (1.1)
and (1.2) for further discussion.

2.2. Case 1.1

Let us assume that
|:A31(w2)wf + Az (wr)wy + A33(w2)}
A (w) w3 + Aoy (w)ws + Az (wy)

=1 2.13)

and so from (2.11) we obtain another form of QRT mapping in three dimensions
_ [Asa) —azA ] — [Ayax — a1 Az ]wy

w3 = , (2.14)
[A2az — a2 A3] — [Aza; — a3 A]wo
with 12 parameters («;, 8;), j = 1,2, 3,4, 5, 6, admitting one integral (2.2) where
Al :Al(wl,wz)ZYDZt, A2=A2(w1,w2)=YEZ’, A3=A3(U}1,U}2)=YFZt
a; = a;(wy, wy) =YDZ', a, = ar(wy, wy) = YEZ', as = az(wy, wy) = YEFZ'
o) Oy o o4 O5 0O Q) Oy o3
D = Oy O5 0Oy , E = a5 0O 0O5 . F = o4 O5 0O
o3 Oy o oy o5 0Oy o) Oy O
B Bs B Bs Bs B Br B2 B3
D=8 B B, E=|B5 Bs Bs5|. F=|B Bs B
B B B B2 Bs Pa B Bs B

Z = [w% wo 1],Y= [w% wq 1]
and A;(wy, wy) ,i =1,2,3, asin (2.9).

It is straightforward to check that (2.14) is a measure preserving one with measure
[a1(wy, w)wd + az(wy, w)wo + as(wy, wg)]_]. Also the associated integral given in (2.2)
has the reversibility property.

4
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An another independent integral for the identified O AE s namely (2.5) and (2.14) can be
constructed either by considering a different form other than (2.2) or identifying the parametric
restrictions under which (2.5) becomes (2.14) or vice versa. In this paper we proceed with the
latter to construct the second integral. As a consequence, we obtain the following QRT type
mappings with two independent integrals. They are as follows.

_ Lwi, wa) + fi(wy, wa)wo Lt fiwg

®  filwy, wa) — fr(wy, wy)wo  fi— pwy’

or ws (2.15)

where

fi = o ((L+wiw)? — (W — w2)?) + 2000 (wy + wo) (1 +wywo) + o5 (1 +wi) (1 +w3),

fo = 2a1(wy; — wi)(@iwiws + aawi + oows + )

[arwiws + a1 (wy — wy) — az]wy — (@ywiwy + aawy + Wy + o)

I , , =
1(Wo, wi, w2) (a% — ozlz)wl(wowg —-1) - [2a1a2w1 + (0512 +a§)](wo + wy)

(2.16)
[A1(wi, wo)w + Ay (wy, wr)wo + Az(wy, wy)]

I (wo, wi, wy) = (2.17)

[a1 (w1, wa)w} + az(wy, wr)wo + as(wy, wa)|
Ar(wi, wo) = af(wy — wi) (1 +wiw)) — a3 (wy + wa) (1 +wiwy) + 2000 (wr — wi)ws,
Az (wi, wp) = — fi(wy, wa), az(wi, wa) = fi(wr, wa),
As(wy, wa) = af (wy — w) (1 + wywy) + 2005 (wy — wo)wy — e (wy +wy) (1 +wywy),
ar(wy, wy) = e (wy — wy) (1 +wiwy) + o3 (wy + wy) (1 +wiwy)
+2051a2(w,2w§ +wiwy + wl2 + 1),

az(wy, wy) = of (wy — w)(1 + wiwy) + a3 (wy +w) (1 +wywy)

+2oz1a2(1 +wiwy + wfw% + w%)
[+ fiwo

= : 1, 2.18
7= fown o F (2.18)

(ii) w3

fi= [(1 +ot2)wf +(1—a®Hw, — 2a]w§ + [(1 — az)wf +2(1+a)w +1 — az]wz
—20w? + (1 —aPHw; +a’ + 1

fr=(+D[(a+1lw +1—a)w; — (@+D(w] — Dws + (@ — Dw] — (@ + Dwy]

B(w,wy — 1) + C(wp + wy)
Iy (wo, wy, wy) = 2.19
o, Wi w2) = e — 1)+ Ewo + w2) 19

[A1 (w1, wo)w + Ay (wy, wr)wo + Az(wy, wy)]

I (wo, wi, wy) = (2.20)

,
[a1(wi, w)w + az(wy, wa)wo + az(wi, wy)]

where
B = (a* — 4a? — Dw, — (1 +a?)?, C =40’ w, — 20° — 2u
D=(a2—1)w1—oz2—1, E =2aw;

Ap(wy, wp) = [(oz4 —4a® — l)wf +40’w, — (o® + 1)2]w§
+[ 207 (e + Dwi +20% (¢ — Dw; + 4o’ Jw,

+ (=1 —4a® +ahHw? — 2a°(1 +a®)w; — 1 — 4a” +a*,
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Ar(wi, wo) = [20° (0 — Dwy — 2% (e + Dw] + 4o’ w3
+[2e% (@ — Dwi — 4’ (@ + D*w; +20% (2” — 1) |ws
+4a3wf +20% (@ — Dwy — 222 + 1),

As(wi, wy) = [(—4e® + ot — Dwf — 20%(@” + Dw + o — 4a® — 1]w3
+ [4a3w% +20%(@® — Dwy — 20 (o + l)]wz
— (ot2 + 1)2w% +4a3w1 +at —4a® -1,

a(wy, wy) = [(Ol2 + l)zwf +4odw; — ot +40® + l]wg + [—2012(0:2 + l)w%
+20% (e — Dwy +4a3]w2 + (o + l)zu)f
—20%(@® + Dw + (@ + 1),

az(wi, wo) = [(@® + D*wi — 20*(@® + Dwy + (& + 1)*]w3
+[4e’wT + 20 (@ — Dwy — 2% (e + 1) Jwy
+ (40(2 —at+ l)w% +4a3w1 + (oz2 + 1)2,

ar(wy, wr) = Ax(wy, wy).

—w+ 1+
Qi) ws = L2 Wit drwiw)u 2.21)
I +wiws — (w2 — w)wo

and
-1+0+
I (wo, wy, wp) = —2 ” w( ?Z)wo, (2.22)
2Wo —
Aj(wy, w)wi + Ax(wy, wy)wo + Az(wy, wy)
I (wo, wi, wp) = [ 02 ], (2.23)
[a1 (w1, w2)w§ + az(wy, w)wo +as(wy, wy)]
where

2 2
Aj(wr, wp) = wiwy — W + Wiws + Wy,

Ar(wy, wr) = ax(wy, wy) = (w% + wl)wg + (wy + 1)2w2 +1+w,
As(wi, w) = wiw) + (1 +w)wy — wy,

a(wy, wy) = w%w% + (wl2 +w1)w2+ wl2 +w;+1,

az(wy, wy) = (w%+w1 + 1)w§ +(1+w)w,y + 1.

We would like to mention that (2.21) is also a periodic recurrence equation and hence two
integrals both quadratic in wg, w;, wy can be found [9]. Also (2.21) can be transformed into
the following linear OAE:

On+3)—60(m+2)+60(n+1) —0(n) = pnm, 0(n) = arctan(w(n)), (2.24)
and so the general solution of the identified difference equation (2.21) reads

b4
w(n) = tan (cl +cpcosn + c3 sinn+%>, peZ, (2.25)
where ¢y, ¢; and c3 are arbitrary constants.
. f2 + frwo
@iv) w3 = —m——, (2.26)
J1 = fawo

fr = (wy — w) (Bwiw; +8wywr — wi — w3 +3),
fi = (1 +wwy) (wiw; + 8w wy — 3wi — 3w3 +1).

_ (wa —w) U +wowy) — (wi — wo) (1 + wywy)

T+ wowy) (1 + wiwa) + (wa — wy)(wy — wo) |
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Note that (2.26) can be transformed into a linear OAE
On+3)—30(n+2)+360(n+1)—0(n) = pm, 0(n) = arctan(w(n)) (2.27)
with the general solution

w(n) = tan (%rﬂ +an’® +bn + c) , pEZ, (2.28)

where a, b and c are arbitrary constants.

2.3. Case 1.2

Let us assume that
|:A31(w2)w% + Az (wr)wy + A33(w2)}
A (w) w3 + Aoy (w)ws + Az (wy)
Here again we obtain a third order OAE (2.11) with one integral given by (2.2) with the
following explicit forms of A;;’s:

(2.29)

Aj(wr) = (qwy + o) (Brw + Ba), (2.30a)
Asi(wy) = App(wy) = (@1 fow + a1 frwy + o fo +afo)(1 +wy),  (2.30b)
Asi(wy) = Ap(wy) = oy fo(1+ wy)?, (2.30c)

A () = (@22 + 201 fr + @1 B)wT + azwy + 201 B + a1 f3 + a2 B, (2.30d)

An(wy) = Ap(wy) = (@ fowi +axfowy + a1 fo + a1 B3)(1 +wy),  (2.30e)

Azz(w)) = (2w +ap)(Bawy + B3). (2.301)
ajr(wy) = (1w +y2)(Brwy + Ba), (2.31a)
ar (wy) = ap(w) = (Yifawi +yifiwr + y1f2+ y262) (1 +wy), (2.31b)
azi(wy) = aiz(wy) = y1 ol +wy)?, (2.31¢)

an(wy) = (fa +2y1B2 + Vi)W + 3wy + 21 Ba + Vi B3 + v,  (2.31d)
an(wy) = ax(wi) = (1fawr + y2fowr + 182 + y183) (1 + wy), (2.31e)

azz(wy) = (awi + Y1) (Bowy + B3). (2.311)

It is not clear to us how to construct the second independent integral for (2.11) in general and
is under investigation.

2.4. Case 2

Equation (2.4) can also be factored into

(u)3 Cwy |:A31(w2)w% + A (wr)w; + A33(w2)}> (u) _ |:f1 (w, wa) — wo fo(wy, wz):|
Az(wpw; + Ay (w)ws + Asz(wy) S2(wi, wa) — wo f3(wr, wa)
|:A11(w1)w§ + Ao (w)wz + A31(w1)i|>
A (w)w? + Ap(wa)w + Az (w))
provided in addition to (2.8a)—(2.8b) the following condition is satisfied:
[An(w)w] + Ay (wDwa + Asp(wi)]  [Asi(w2)w] + Asa(w2)wy + Asz(wr)]

[An(w)w] + Ap(w)wy + Az (wo)] B [Ai3(w)w] + Az (w)ws + Azz(wi)]

_ [as1 (wo)w? +azn(w)wy +az3(wr)] — [ar (w)w3 +az (w)ws +azi (wi)] (2.33)
[a3(w)w] +aps(w)ws +ass(w))]  [an(w)w +ap(w)w; +ai(wy)]’ .

=0 (2.32)
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where f;(w;, wy), i =1, 2,3, are given in (2.9). As before (2.32) can be rewritten as

_ Az (w)wi + Az (wr)w + Azz(ws)
w3 = W L , (2.34)

Az (w)ws + Asz(w)ws + Aszz(w)
ws = |:f1(wlv wy) — wo fa(wy, wz)] |:A11(w1)w§ + Ao (w)wy + A31(w1)] (2.35)

’ fr(wi, wa) — wo f3(wr, wa) | [ Ajj(w2)wi + App(wa)wy + Az(wy) '
or
on — [?1(101, wy) — ?2(11)1, wz)wo} . (2.36)
G3(wi, wa) — Ga(wy, wr)wo

Note that (2.34) arises as a reduction of the modified K-dV lattice equation and has been
studied extensively by many authors [8, 10, 13, 17, 21, 22]. From (2.35) it is clear that there
exist two possibilities and we denote them as cases (2.1) and (2.2) for further discussion.

2.5. Case 2.1

Let us assume that
An(w)w3 + Ay (w)wa + Az (wy)

3 = (2.37)
Ap(w)wy + App(wa)wy + Az (ws)
and so (2.35) gives another QRT type mapping in three dimensions
ws — |:f1(w1, w) — fr(wi, wz)wo] (2.38)
frwr, wo) = f3(wi, w2)wo

with 22 parameters admitting one integral (2.2) which is cyclic invariant where

A(wy, wp) =YDZ', Ar(wy, wp) = YEZ', Asz(wy, wp) = YFZ'
ar(wy, wy) = YDZ', a(wy, wy) = YEZ', az(wy, wy) = YFZ!
and
o oy o3 oy a4 O o3 a5 o7
D=|a oy as5], E=|os ag a9 |, F=1las a9 g
o3 O o7 o5 O9 (g0 a7 1o o1
3 B B B3 ) B Bs Bs ) B Bs B
D=1B Bs B |, E=|Bs Bs Bo | F=\1B PBo PBio
Bs Bs B Bs Bo Bio B1 B Bu
Z = [w% wo l], Y = [wf wi 1]

and A;(w;, wy),i = 1,2,3, asin (2.9). Itis easy to check that (2.38) is a measure preserving
one with the measure [a1 (wy, wz)w(z) +ax(wy, wy)wy + az(wi, wz)]7 .

The second integral I, (wg, wy, wy) can be constructed for (2.38) by finding the conditions
on the parameters «; and §; at which (2.38) becomes (2.5) or vice versa. As a result we obtain
a third order OAE

wy + w; — (1 — wlwg)wo

wy = , (2.39)
1 — wiw; + (W + wo)wy
admitting two independent integrals I; (wg, wy, wy) and I (wg, wy, wy):
1+
I (wo, wi, wp) = 22t (2.40)

wz—l—(l+w2)w0’
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B(wy, wy, wa) + C(wp, wy, wy)

I(wo, wi, wy) = , (2.41)
! B(wo, wy, wp) — C(wo, wy, wy)

B(wy, wi, wr) = (w% + 1)(w§ + 1)(w(2) + 1),

C (wo, wi, w) = (w2 — wy)(w§ — (w2 + w)wo + wiws).
Also (2.39) can be transformed into a linear OAE
On+3)—0(n+2)—0(m+1)+60(0n) = pn, 6 (n) = arctan(w(n)) (2.42)
with general solution

prn?

wn) =tan | c; +con+c3(—1)" + 7 , peZ, (2.43)
where ¢y, ¢; and c3 are arbitrary constants.
2.6. Case 2.2
Let us assume that

A (w) w3 + Ay (w)ws + Az (wy) (2.44)

A (w)wi + App(wr)wy + Agz(wr)
Then we obtain a third order O AE (2.36) with an integral given by (2.2) where the explicit
forms of A;;s are given in (2.30a)—(2.30 ) and a;;’s are as follows:

aj(wy) = (@wy +a2) (V1w +y2), (2.45q)

a1 (wy) = app(wy) = (12w +aryiw; +ar1yz +az2y2) (1 +wy), (2.45b)

azi(wy) = aiz(wy) = a2 (1 +wy)?, (2.45¢)

an(wi) = (0ays + 20172 + a1 y)wi + yawy + 2002 +o1ys + o)y, (2.45d)

an(wy) = ax(w)) = (12w +wywr +ary2 +oys) (1 +wy), (2.45¢)

azz(wy) = (w; +a)) Yowy + y3). (2.45f)

The construction of the second independent integral for (2.36) is under investigation.

3. Conclusion

In this paper, a systematic investigation to derive three-dimensional analogs of two-
dimensional QRT mappings is presented. We have identified four distinct third order
O AFEs namely (2.15), (2.18), (2.21) and (2.39) admitting two independent rational integrals.
Moreover each of them is a measure preserving one. We have observed that one of the rational
integrals in each of the obtained mappings is tri-quadratic. Note that the mapping given in
(2.26) admits one rational integral and can be transformed into a linear O A E through a global
transformation. In appendix A we provide a list of three distinct QRT mappings in three
dimensions possessing three n-dependent integrals. Hence, we conclude that all the identified
eight cases of third order O A E with two or three integrals are integrable. The existence of
the second integral for the maps given in cases (1.2) and (2.2) is under investigation.
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Appendix A. Third order QRT maps with n-dependent integrals

We would like to report that we have obtained the following QRT maps (through the trial and
error method) admitting three independent n-dependent integrals:

|:f1(w1, wy) — fa(wy, wz)wo]

Hwi, wa) — fz(wr, wa)wo

w3 =

(A.1)

(i) fi(wr, w) = 22 P(wy — A (wy — A — A2 (wa — Ak (wy — 12),
Hwi, wr) = AP (wy — A (wy — A1) = A (wa — A (wy — 12),
fs(wi, wp) = P(wy — A (wi — &) = (w2 — 1)  (wy — A2).

i —A — Ay \ 22 A \2®T a- 1-—
I =a llog (wz 1><w1 2) (wo 1) +( az)( a3)logP ’

L wy — Ao w; — A wo — A k+1—2
Cn [(wr — A\ (wi — 2\ (we— A\ (1 —a)(l —a3)

I, =a," {log + —————logP;,
L UJQ—)LQ wl—)q UJQ—)LQ | k+1—2
[(wa— A\ (wi— 22\ (wo— A \""] (I —a)(1 —a)

+ ——F———logP

L u)2—)\2 wl—)\.] wo—)q | k+1—-2

(i) fi(wi, wy) = a>DQ(a — wa)(a — wy) — 2a(or — wy) (@ — wy)

+la? (o — wy) + ko (o — wy),

I =a;" {log

H(wi, wr) =aK (@ —wy) +al(a — wy) — (@ — wy) (o — wy) + D0ala — wr)(a — wy),
f(wi, wr) = k(e —wy) +l(o — wy) + DO (o — wa) (o — wy).

I = g 1 ot o003 O —o)(1 —a3)
TR I D@ —wy) D@ —w) D — wp) k+1—2
. 1 o) + a3 aja3 O —ap(1 —a3)
L=aqa, - + +
D@ —wy) D(a—wy) | D(x—wo) k+1—2
n 1 ap +ap aja 0 —apn(d —a)
I = oy — + +
D(a—w;) D(x—w;) D(ax— wgp) k+1—2

(i)  fi(wi, wy) = tan(ktan™' (w»)) + tan(ltan™" (wy)),
H(wi, wy) = 1 — tan(ktan™" (wy)) tan(ltan™ " (wy)),  f3(wi, w2) = — fi(wy, wy)

I; = a;" (tan~ " (wy) — (0 + a3) tan~ ' (wy) + o3 tan ™" (wy))
I = o " (tan~ " (wy) — (o1 +a3) tan~ ' (wy) + o3 tan ™" (wy))
L=ay" (tan’l(wz) — (01 + ap) tan’l(wl) + o tan’l(wo)).
Here

o) +oy+oaz =k, o0y + o3 + ooy = —I, oy = —1.

10
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